

SKF Oil+Air Lubrication Units and Mixing Valves

Product Series OLA, MV and 161

For use in SKF Oil+Air Centralized Lubrication Systems



Contents

Product overview
SKF Oil+Air lubrication systems 4
Components of oil+air lubrication systems 4
Principles of oil+air lubrication - example: rolling bearings . 5
Lubricant quantities
Requirements for compressed air 6
Requirements for lubricant
Lubricant feed lines (criteria, bearing type)
SKF Oil+Air lubrication units
Designs
Configurator, order example9
Dimensions
Technical data
Hydraulic layouts
Spare parts

SKF Oil+Air mixing valves with metering
MV20x-1 / MV30x-1
161-300-338/161-300-339
SKF Oil+Air mixing valves without metering
161-300-313/161-300-315
MV21-MV3817
SKF Oil+Air flow dividers
169-000-18x/169-000-25x18
Accessories
Hose coils, directional control valves,
pressurized air control valves
Nozzles, pressure switches,
differential pressure switches20
Electrical connections, fittings
Tubing, pressure filters, oil-streak sensors 22

SKF Oil+Air Lubrication Units and Mixing Valves

SKF Oil+Air lubrication units are employed for a wide range of applications in the field of centralized lubrication technology. The main field of application is mechanical

engineering due to the high demands made on a defined lubrication system that provides high availability with low wear and a long service life. SKF Oil+Air lubrication units are employed for bearing lubrication, especially the lubrication of spindle bearings. Additional fields of application include the lubrication of chains, gear trains, and process oiling. SKF Oil+Air lubrication units can be individually configured for each application.

Advantages

- Better machining performance in spindle bearing lubrication due to higher speed factors (on spindle bearings, up to approx. 2,5 × 10⁶ mm × rpm)
- Higher dependability due to continuous supply of defined quantities of lubricant; sealing air provided by the system protects the bearings against outside contamination
- Less lubricant as much as needed, as little as possible for greater safety and environmental protection; demand-based metering for each lubrication point, with approximately 90% lower lubricant consumption compared to oil lubrication; no oil mist, no repack period compared to grease lubrication

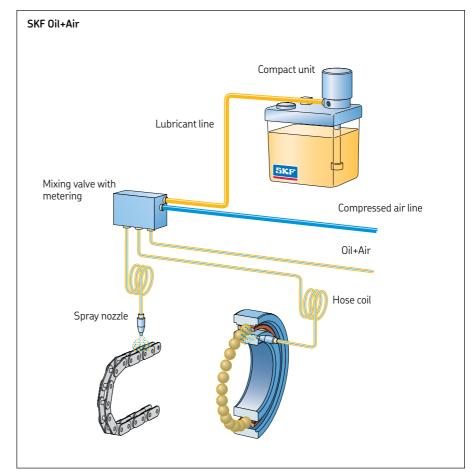
Fields of application

- Bearing lubrication, especially of spindle bearings
- Chain lubrication
- Gear train lubrication
- Slideway lubrication
- · Assembly and process oiling

Product series	Material Seal	Material Housing	Actuating p Air	oressure [bar] Oil	Number of outlets	Mete 0,01	red qua 0,02	ntities 0,03			0,16	Page
DLA1-1	NBR	_	3–10	30	1	•	•	•	•	•	•	8–12
DLA2-1	NBR	_	3-10	30	2	•	•	•	•	•	•	8-12
DLA3-1	NBR	_	3-10	30	3	•	•	•	•	•	•	8-12
DLA4-1	NBR	-	3-10	30	4	•	•	•	•	•	•	8-12
DLA5-1	NBR	-	3-10	30	5	•	•	•	•	•	•	8-12
DLA6-1	NBR	_	3-10	30	6	•	•	•	•	•	•	8-12
OLA7-1	NBR	_	3-10	30	7	•	•	•	•	•	•	8-12
OLA8-1	NBR	-	3–10	30	8	•	•	•	•	•	•	8–12
Mixing valves with	metering											
MV2(3)01-1	NBR/FPM	Aluminium	3-10	17-40	1	•	•	•	•	•	•	13-14
MV2(3)02-1	NBR/FPM	Aluminium	3–10	17-40	2	•	•	•	•	•	•	13-14
MV2(3)03-1	NBR/FPM	Aluminium	3-10	17-40	3	•	•	•	•	•	•	13-14
MV2(3)04-1	NBR/FPM	Aluminium	3-10	17-40	4	•	•	•	•	•	•	13-14
MV2(3)05-1	NBR/FPM	Aluminium	3-10	17-40	5	•	•	•	•	•	•	13-14
MV2(3)06-1	NBR/FPM	Aluminium	3–10	17-40	6	•	•	•	•	•	•	13-14
MV2(3)07-1	NBR/FPM	Aluminium	3–10	17-40	7	•	•	•	•	•	•	13-14
MV2(3)08-1	NBR/FPM	Aluminium	3–10	17-40	8	•	•	•	•	•	•	13-14
161-300-338	NBR	Aluminium	3–10	12-45	1	_	_	•	•	•	_	15
161-300-339	NBR	Aluminium	3–10	12-45	1	-	-	•	•	•	-	15
Mixing valves witho	ut metering											
161-300-313	NBR	Aluminium	3-10	3-40	1	_	_	_	_	_	_	16
161-300-315	NBR	Aluminium	3–10	3-40	1	_	_	_	_	_	_	16
MV21	NBR	Aluminium	max. 10	5	1	_	_	_	_	_	_	17
MV32	NBR	Aluminium	max. 10	5	2	_	_	_	_	_	_	17
MV33	NBR	Aluminium	max. 10	5	3	_	_	_	_	_	_	17
MV34	NBR	Aluminium	max. 10	5	4	_	_	_	_	_	_	17
MV35	NBR	Aluminium	max. 10	5	5	_	_	_	_	_	_	17
MV36	NBR	Aluminium	max. 10	5	6	_	_	_	_	_	_	17
MV37	NBR	Aluminium	max. 10	5	7	_	_	_	_	_	_	17
MV38	NBR	Aluminium	max. 10	5	8	_	_	_	_	_	_	17

Fundamentals

Oil+air lubrication systems SKF Oil+Air lubrication systems are employed for bearing lubrication, especially the lubrication of spindle bearings.

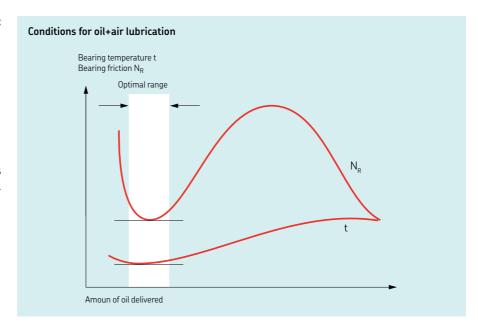

Additional fields of application include the lubrication of chains, gear trains, and process oiling. Oil+air lubrication is distinguished by the fact that a metered quantity of oil is drawn into streaks in a lubrication line by a continuous air flow (compressed air) and is transported in the direction of the compressed air flow along the tube wall and to the lubrication point. A lubrication unit, a progressive distributor, or a single-line distributor pumps a define quantity of lubricant to a mixing valve. There, an air flow feeds the lubricant through the secondary line and to the lubrication point in the form of oil streaks. The bearing or chain is thus continuously supplied with a flow of lubricant and air. The air flow introduced creates overpressure in the bearing assembly and prevents the ingress of contaminants. This form of lubrication typically does not form an oil mist.

Oil-streak sensors can be employed for monitoring in SKF Oil+Air lubrication systems. Oil-streak sensors continuously monitor the oil flow in the secondary line. Oil+air lubrication units can be configured individually for each application.

Components of oil+air lubrication systems

- Gear pump unit with oil pressure switch and fill level switch in design with a control unit (IG54-20-54-I) and without
- Oil+air mixing valves with metering
- Mixing valves and lubricant distributors for external lubricant metering
- Air control valve with and without air filter
- Pressure switch for monitoring compressed air
- Oil filter with and without contamination monitoring
- 3/2 directional control valve for switching compressed air on and off
- Oil-streak sensor GS4011
 (→ brochure 1-1704-EN)

SKF Oil+Air lubrication systems can be ordered either as a complete oil+air lubrication unit (gear pump unit, oil+air mixing valve, and optional accessories installed on mounting plate) or as individual components (gear pump unit, oil+air mixing valve, lubricant distributor, and accessories individually).


Fundamentals

Principles of oil+air lubrication - example: rolling bearings

Many fields of engineering require that the speeds of spindles and shafts on rolling bearings increase beyond the limits cited in rolling bearing catalogs, e.g. in the case of bearings for grinding and milling spindles to increase cutting speeds. Beyond the design and construction of the bearing, another critical aspect of meeting this requirement is the selection of a suitable lubrication system. Conventional lubrication systems (e.g. oil bath lubrication or circulating-oil lubrication), for which the values in rolling bearing catalogs were prepared, fail in such cases because friction-related losses, and thus the temperature, rise beyond permissible limits due to hydrodynamic losses in the lubricant. In a circulating-oil lubrication system with simultaneous cooling of the lubricant, it may be possible to reduce the temperatures, but higher power losses and greater machine-/ seal-related complexity would have to be endured. The diagram on this page shows that the best values in respect to bearing friction (NR) and bearing temperature (t) are achieved with a minimal supply of oil.

The required low lubricant quantities can be best fed to the bearings using the principle of oil+air lubrication, as this lubrication system allows for precise metering of lubricant quantities. In the case of oil-mist lubrication, however, it is hardly possible to supply individual bearings on a reliable and constant basis with the small quantities required because oil-mist lubrication is too imprecise in lubricant metering and feeding. Permanent grease lubrication is well suited and often employed. However, the limit on speed factors achievable using permanent grease lubrication is significantly lower than with oil+air lubrication.

The limit for permanent grease lubrication can generally be assumed as a speed factor $n \times dm$ of < 1 to 1.5×10^6 mm $\times dm$, depending on the bearing type and the grease used. Further, the grease change intervals must be adhered to when using permanent grease lubrication; these are eliminated in oil+air lubrication. For higher speed characteristics, oil+air lubrication is therefore an appropriate system that can, of course, also be used when low speed characteristics are involved.

Lubricant quantities

The amount of lubricant required to lubricate a bearing depends on the type of bearing, number of rows, width, etc. In principle, the bearing manufacturer should be contacted when determining the quantity of lubricant for a bearing. The literature contains the following formula to calculate approximate oil requirements:

$Q = w \times d \times B$

Q = quantity in mm³/h

w = coefficient = 0,01 mm/h

d = internal bearing diameter in mm

B = bearing width in mm

In practice, however, the values obtained with this formula had to be increased 4- to 20-fold. That shows quite clearly that the actual amount of lubri-

quite clearly that the actual amount of lubricant per bearing has to be empirically determined for each specific case. In tests, lubricant quantities of 120 to 180 mm³/h have proven to be favorable, for example, for spindle bearings.

Fundamentals

Requirements for compressed air

Compressed air must be dry and filtered; filter rating of <= 5 μm. A conventional water separator, preferably with semi-automatic emptying, is sufficient for water separation. The quantity of air required for faultless transport of the oil in tubing with an internal diameter of 2.3 mm ranges from roughly 1000 to 1500 l/h. This value applies to oil viscosity classes ISO VG 32 to ISO VG 100. Higher values must be assumed in the case of oils with a higher viscosity or different adhesiveness. The air pressure has to be adjusted so that this amount can be put through every line, with due consideration given to pressure losses in the line and storage of the quantity involved. The air pressure available at the unit's inlet port (supply system) should be at least 3 bar or preferably 6 bar.

Requirements for lubricant

Oils belonging to ISO grades VG 32 to VG 100 have proven to be very suitable. Oils with EP additives are particularly recommended when high loads and low speeds are involved. Oils with a viscosity lower than ISO VG 22 should be avoided, since the load-carrying capacity might no longer suffice in the event of large loads, resulting in shorter bearing life. Oils with a higher viscosity can be used. Oils containing molybdenum disulphide additives should not be used, however, since with these oils there is a risk that molybdenum disulfides will deposit on the nozzle holes and block them. Moreover, the bearing clearance can be critically diminished due to plating with molybdenum disulphide particles.

6 SKF

Fundamentals

Lubricant feeding (criteria, bearing type, etc.)

The way the lubricant is fed to the bearing depends on the bearing type and the bearing assembly's design features. The following illustrations provide examples of the lubricant feeding. (\rightarrow Fig. 1).

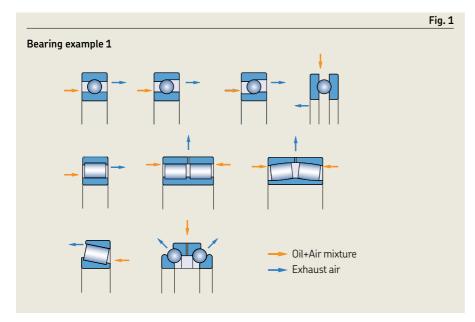
In case of single-row rolling bearings, it is possible for the lubricant

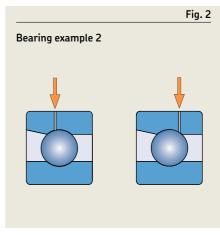
to be introduced into the rolling bearing from the side. The nozzle should be at the level of the rolling bearing's inner ring. Under no circumstances should the oil+air flow be aligned directly with the cage of the rolling bearing. If using rolling bearings that exert pumping force in one direction (e.g. angular contact bearings), the lubricant must be fed in the direction of pumping force. In case of double-row cylindrical roller bearings, the lubricant should be introduced into the rolling bearing from the side at the level of the outer ring raceway. The lubricant is then distributed almost uniformly to both rows of rolling bearings. On rolling bearings with a with external dimensions from 150 to 280 mm, it is recommended that a second nozzle be installed, with a corresponding increase in case of larger rolling bearing diameters. A single nozzle is sufficient for most applications in which the lubricant is fed through the outer ring of a rolling bearing. The lubricant should be introduced into the bearing assembly via a nozzle whose length depends on the bearing size. Suitable

nozzles can be ordered from SKF Lubrication Systems Germany GmbH.

It is also possible to introduce the lubricant directly into the outer ring of the rolling bearing via a bore (\rightarrow Fig. 2).

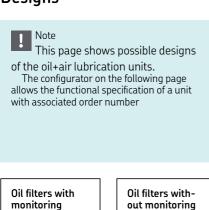
In this case, it must be assured that the lubricant is not introduced into the pressure zone of the rolling bearing between the rolling element and the bearing ring.


A drain must be provided for the delivered lubricant to keep an oil sump from forming in the lower portion of the bearing. This drain bore must have a diameter of at least 5 mm.


The indicated air pressure is generally enough to reliably overcome the air vortex produced by rolling bearings. If in individual cases a higher air pressure is required to reliably feed the lubricant, this does not impair the function of the entire oil+air lubrication unit.

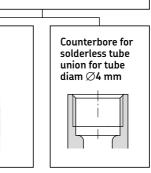
Secondary lines made of transparent plastic are recommended so that the lubricant transport in the secondary lines (oilshear formation) can be assessed visually. Secondary lines made of transparent plastic are available in rigid (unplasticized) and flexible (plasticized) designs. The minimum length of the secondary line is 1 m.

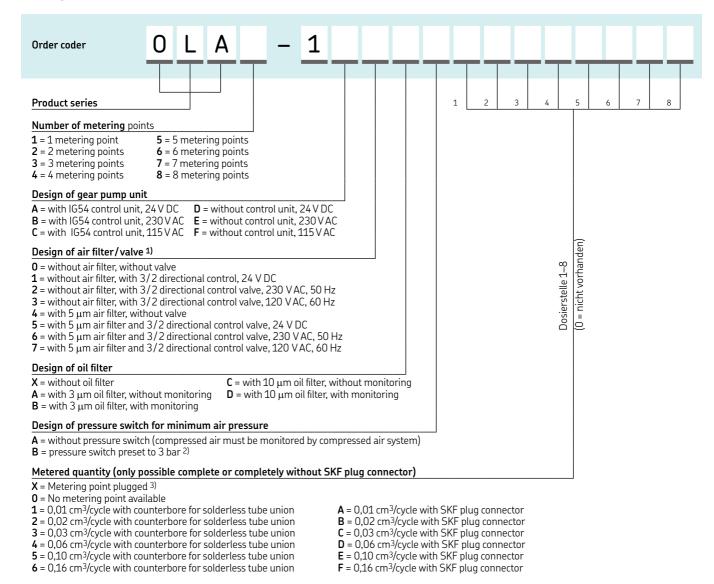
The maximum length is 10 m. A hose coil is installed approximately 0,3 m in front of the bearing assembly and serves as a lubricant reservoir. If the distance between the oil+air lubrication unit and the bearing is less than 1 m, the secondary line must be laid as a coil. After the compressed air is turned off, the lubricant distributed in the hose coil collects in the lower coils; this ensures that the bearing is supplied with lubricant again shortly after the compressed air is turned back on. The center axis of the hose coil should always be laid horizontally or up to a maximum inclination of 30°. The secondary lines may be laid at an upward or downward angle. Avoid changes in the cross-section of the secondary line from small to large cross-sections in the direction of flow of the lubricant. When the cross-section does change, the transition should be gentle.


SKF oil-streak sensors are recommended for monitoring the continuous lubricant flow in the secondary lines. Oil-streak sensors allow monitoring of the oil-streak transport along the course of the lubrication line between the oil-air metering unit or the mixing valve and the lubrication point.

SKF Oil+Air lubrication unit - OLA

Designs





SKF plug

connectors

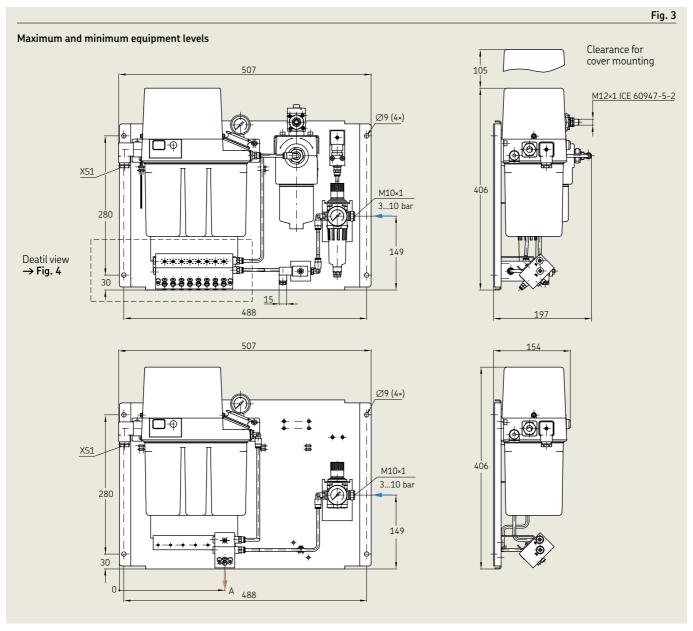
SKF Oil+Air lubrication unit – OLA

Configurator

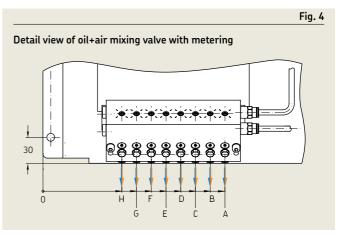
1) The compressed-air valve must be wired by the customer. It can be wired to the internal control unit (if present) or to the machine's PLC. If wiring to the internal control unit, ensure that the operating voltage of the control unit matches the switching voltage of the compressed-air valve. The compressed-air valve may otherwise be damaged.

2) The pressure switch is wired at the factory to the internal control unit (if present). Wiring must be performed by the customer if no control unit is present or the pressure switch is to be connected to the

3) without metering point (with a screwed blanking plug)


Order example

OLA1-1E0XA30000000


- Product series OLA
- One metering point
- Without control unit. 230 V AC
- · Without air filter, without valve
- · Without oil filter
- · Without pressure switch for minimum air pressure
- Metered quantity 0,03 cm³/cycle

SKF Oil+Air lubrication unit - OLA

Dimensions

Dimensions of oil+air mixing valve with metering								
	Α	В	С	D	Е	F	G	Н
OLA1 OLA2 OLA3 OLA4 OLA5 OLA6 OLA7 OLA8	212 209 205 201 197 206 202 210	- 192 188 184 180 189 185 193	- 171 167 163 172 168 176	- - 150 146 155 151 159	- - - 129 138 134 142	- - - - - 121 117 125	- - - - - - 100 108	- - - - - - - 91

SKF Oil+Air lubrication unit – OLA

Technical data

Gear pump unit 1)

Delivery rate of unit 2) Number of metering points

Max. operating pressure Ambient temperature

Pumped medium

Operating viscosity Rated capacity of lubricant reservoir

Lubricant reservoir material Protection class Pressure relief valve Thermal circuit breaker

Duty type (per VDE 0530)

Mounting position

0,2 l/min

1 to 8 (>8 on request) 30 bar

+10 to +40 °C

Mineral or synthetic oil, compatible with NBR elastomersn

 $20 \text{ to } 1500 \text{ mm}^2/\text{s}$ 3 I (others on request)

Polyamide (PA6) IP54 Included Included

Standard design: S3, ON-time 20%

24 VDC

1,6

39

(1.25 to 25 min)

Vertical

1) techn. Daten des Öl+Luft-Mischventils MV20x → Seite 13 2) bezogen auf eine Ölviskosität von 140 mm²/s bei einem Gegendruck von 5 bar

Motor (gear pump unit)

Rated frequency [Hz] Rated voltage

Rated current [A] Starting current [A] Power [W]

115/230 VAC

115/230 VAC 1,06/0,53

1,36/0,68 75 60

Oil filter

 $3 \mu m \text{ or } 10 \mu m$ Filter mesh

6,3 g at $\Delta p = 5$ bar (3 μ m) Contaminant capturee $5.2 \, \text{g}$ at $\Delta p = 5 \, \text{bar} (10 \, \mu \text{m})$

Fill level switch (included in gear pump unit)

Function NC-contact (opens when fill level too

10 to 25 VAC; 10 to 36 VDC Switching voltage range

Switched current (resistive load) ≤0,25 A Switching capacity (resistive load) ≤3 W

IG54-20-S4-I control unit (optionally in gear pump unit)

115/230 VAC (50/60 Hz) select-Rated voltage

able; 24 V DC

60 s (non-adjustable) Pump runtime limit

Interval time 10 min (adjustable from 1 to 99 min) 5 s (adjustable from 0 to 99 seconds) Pump dwell time Pre-lubrication cycles 10 (adjustable from 0 to 99 cycles)

Oil pressure switch (included in gear pump unit)

Function NO-contact

10 to 25 V AC; 10 to 36 V DC Switching voltage range

Switched current (resistive load) ≤1A Switching capacity (resistive load) ≤ 10 W Nominal pressure 20 har

Pressure switch for minimum air pressure

Function1) NC-contact NO-contact

0,5 to 5 bar (preset to 3 bar) Switching pressure Max. switching voltage 250 V

Max. switched current Reset differential Approx. 15 %

1) Depending on wiring

3/2-directional air control valve

120 V AC, 60 Hz; 230 V AC, 50 Hz; Switching voltage

24 V DC

Switching capacity 4W

DIN EN 175301-803-C Plug connector

Pressure range 0 to 10 bar

Oil contamination indicator (optionally installed on oil filter)

Function NC contact = alarm 100%; NO-contact = pre-warning 75%

Max. switching voltage 24 V AC/DC Max. switching capacity 15 W

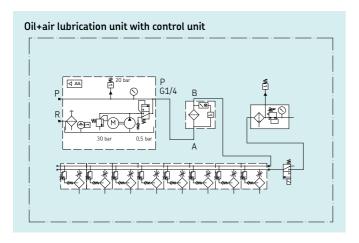
1 A (at 15 V AC/DC) Breaking capacity (resistive load) Opening pressure Δ5 bar -10 %

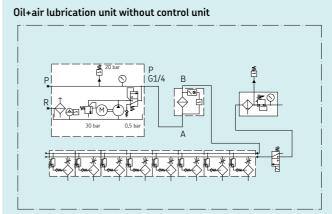
Air pressure control valve

Diaphragm regulator

Max. primary pressure 0-16 bar Secondary pressure 0,5-10 bar Sealing material NBR

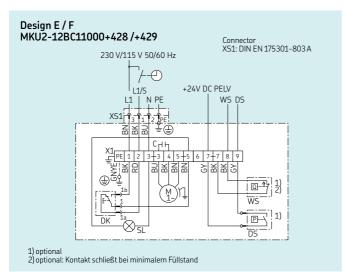
Air pressure control valve incl. filter and water separator

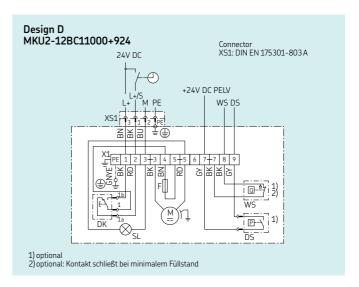

Filter mesh 5 µm

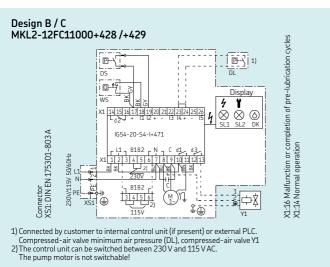

Water separation semi-automatic

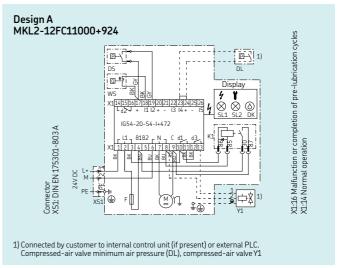
SKF.

SKF Oil+Air lubrication unit - OLA


Hydraulic layouts





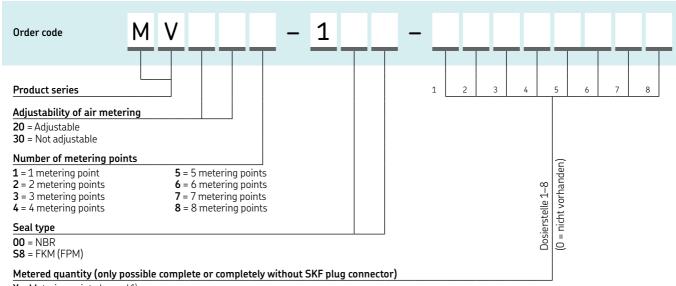

Wiring diagrams

Design of gear pump unit

SKF Oil+Air mixing valves with metering – MV...-1..

Designs

The MV20x-1... and MV30x-1... are oil+air mixing valves with metering. They are built in block design and contain up to eight secondary line connections.

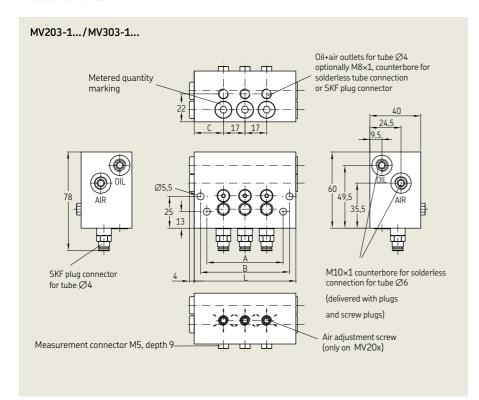

The lubricant metering is selectable in a range of 0,01-0,16 cm³ for each lubrication point.

Secondary line connections which are not needed can be plugged. This involves screwing an appropriate metering screw for zero metering into the mixing valves.

The MV20x-1... design contains an air adjustment screw for setting the quantity of compressed air. The quantity of compressed air cannot be adjusted on the MV30x-1... design. The secondary line connections on both designs are available with SKF plug connectors or fittings for solderless tube unions for tube Ø4 mm. Another oil+air mixing valve must be provided if more than eight lubrication points will be supplied. In this case, the compressed air must be fed separately to each mixing valve.

Configurator

- X = Metering point plugged 1)
- 0 = No metering point available
- 1 = 0.01 cm³/cycle with counterbore for solderless tube union
- 2 = 0.02 cm³/cycle with counterbore for solderless tube union
- 3 = 0.03 cm³/cycle with counterbore for solderless tube union
- **4** = 0,06 cm³/cycle with counterbore for solderless tube union
- $5 = 0.10 \text{ cm}^3/\text{cycle}$ with counterbore for solderless tube union
- $6 = 0.16 \text{ cm}^3/\text{cycle}$ with counterbore for solderless tube union
- $A = 0.01 \text{ cm}^3/\text{cycle}$ with SKF plug connector
- $\mathbf{B} = 0.02 \, \text{cm}^3/\text{cycle}$ with SKF plug connector
- $C = 0.03 \text{ cm}^3/\text{cycle}$ with SKF plug connector
- $D = 0.06 \text{ cm}^3/\text{cycle}$ with SKF plug connector
- **E** = 0,10 cm³/cycle with SKF plug connector
- $F = 0.16 \text{ cm}^3/\text{cycle}$ with SKF plug connector


1) without metering point (with a screwed blanking plug)

Order example for MV206-100-AACCFF00

- Product series MV
- · Adjustable air metering
- 6 metering points
- Sealing material NBR
- Metering of metering points 1, $2 = 0.01 \text{ cm}^3/\text{cycle}$ with SKF plug connector
- Metering of metering points 3, 4 = 0.03 cm³/cycle with SKF plug connector
- Metering of metering points 5, 6 = 0,16 cm³/cycle with SKF plug connector

SKF Oil+Air mixing valves with metering – MV...-1..

Dimensions

	Α	В	С	D
MV201-1 MV202-1 MV203-1 MV204-1 MV205-1 MV206-1 MV208-1 MV301-1 MV303-1 MV304-1 MV305-1 MV306-1 MV308-1	40 55 80 105 130 130 155 155 40 55 80 105 130 130 155 155	20 43 60 77 94 111 128 145 20 43 60 77 94 111 128 145	22 45 70 95 120 120 145 145 22 45 70 95 120 120 145	20 19 23 27 31 22,5 26,5 18 20 19 23 27 31 22,5 26,5 18

Note
The configurator on page 13
allows the functional specification of
oil+air mixing valves with metering with
associated order number..

Technical Data

Metered quantities	
Metered quantity [cm ³ /cycle]	Metering rate marking
0,01 0,02 0,03 0,06 0,10 0,16	1 2 3 6 10 16

-	
Mounting position	preferably as illustrated
Number of metering points Metered quantity per	1 to 8
metering point	0,01– 0,16 cm ³ /cycle
Actuating pressure, air	3–10 bar
Actuating pressure, oil	17–40 bar
Operating temperature	5–80 °C
Sealing material	NBR/FPM
Air consumption	1 000 to

1500 NI/h

MV20x-1.../MV30x-1... mixing valves with

metering

Note
To ensure the proper function of SKF
Oil+Air mixing valves with metering even
after changing the metered quantity, the
meterings 0,01 and 0,02cm³ may only be
replaced by authorized SKF Lubrication Systems employees or partners.

14 **SKF**

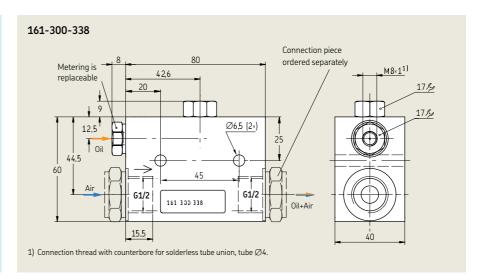
SKF Oil+Air mixing valves with metering – 161-300-338/-339

Designs

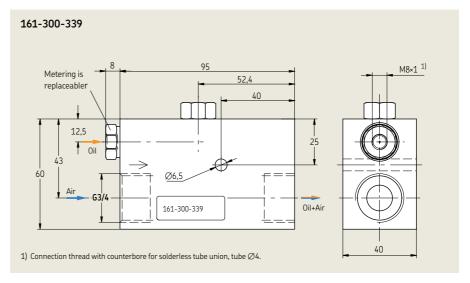
161-300-338 / -339 are oil+air mixing valves with metering with a secondary line connection. These mixing valves with metering can be consolidated into groups for multiple lubrication points. In this case, the compressed air must be fed separately to each mixing valve. Metering is performed by an integrated (SKF MonoFlex) single-line distributor and is selectable between 0,03; 0,06 and 0,1 cm³/cycle.

The lubricant supply connection has a counterbore for a solderless tube union for lines with \emptyset 4 mm. The connection for compressed air is either $G^{1/2}$ 0 or $G^{3/4}$ 4 depending on the design..

Technical Data


161-300-338, 161-300-339

Actuating pressure, air 3–10 bar Actuating pressure, oil 0perating viscosity 20–1 500 Pumped medium 3–10 bar 20–1500 Mineral o


12–45 bar 20–1 500 mm²/s Mineral or synthetic oil, compatible with NBR elastomers

Mounting position as illustrated

Dimensions

Dosiereinheit auswechselbar Order number Metered quantity [cm³/cycle] Metering rate marking 321-40364 0,03 3 321-40664 0,06 6 321-41064 0,10 10

SKF Oil+Air mixing valves without metering – 161-300-313/-315

Designs

161-300-313 / 315 are oil+air mixing valves without metering. Each mixing valve has a secondary line connection. The mixing valves can be consolidated into groups for multiple lubrication points.

Oil supply and metering are performed by an (SKF MonoFlex) single-line distributor (>> brochure 1-5001-EN) connected to the mixing valve and operated on an intermittently operated centralized lubrication system (SKF MonoFlex).

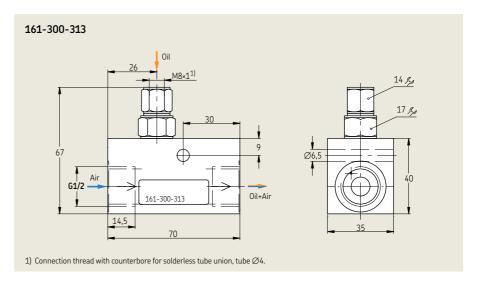
The single-line distributor meters the lubricant, which is fed to the mixing valve through a lubrication line. Within the mixing valve, the supplied compressed air trans-

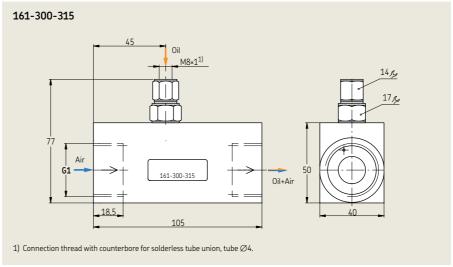
ports the lubricant into the secondary line and to the lubrication point. The metered quantity depends on the number of lubrication cycles on the intermittently operated centralized lubrication systems and the selected metering on the single-line distributor.

The lubricant supply connection has a counterbore for a solderless tube union for tube \emptyset 4 mm. The connection for compressed air is either $G^1/2$ or G^1 depending on the design. An additional mixing valve is required for each additional lubrication point. In this case, the compressed air must be fed separately to each mixing valve.

Technical Data

161-300-313, 161-300-315


Actuating pressure, air Actuating pressure, oil Operating viscosity Pumped media


3–10 bar 3–40 bar 6–760 mm²/s Mineral or synthetic oil, compatible with NBR elastomers

Mounting position

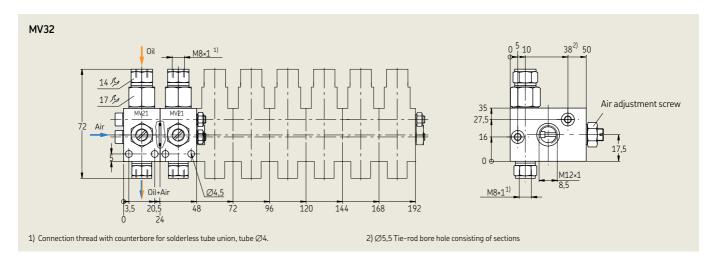
as illustrated

Dimensions

SKF Oil+Air mixing valves without metering – MV21 ... MV38

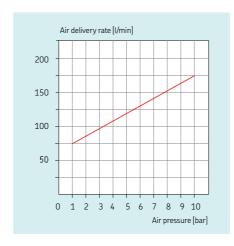
Designs

MV21 und MV32 ... MV38 are oil+air mixing valves without metering and have a modular design with up to eight lubrication line connections (for example, MV35 contains 5x MV21). Oil supply and metering are performed by an (SKF MonoFlex) single-line distributor (brochure 1-5001-EN) connected to the mixing valve and operated on an intermittently operated centralized lubrication system (SKF MonoFlex). The single-line distributor meters the lubricant, which is fed to the mixing valve through a lubrication line.


Within the mixing valve, the supplied compressed air transports the lubricant into the secondary line and to the lubrication point. The metered quantity depends on the number of lubrication cycles on the intermittently operated centralized lubrication systems and the selected metering on the single-line distributor.

Attached externally metering:

- SKF Monoflex distributors 0,01–0,2 cm³
- Injection oiler 0,003-0,03 cm³
- Micro pumps from 0-0,30 cm³



Dimensions

Technical Data

Metered quantities			
Order number	Number of outlets		
MV21 MV32 MV33 MV34 MV35 MV36 MV37 MV38	1 2 3 4 5 6 7 8		

MV21 MV38	
Actuating pressure, air Actuating pressure, oil Operating viscosity Pumped media	max. 10 bar 5 bar max. 3 000 mm ² /s 0il with mineral or synthetic base, compatible with NBR elastomers
Mounting position Metered quantities (external lubricant distributors)	preferably as illustrated 0,003–0,3 cm³/cycle

SKF Oil+Air flow divider - 169-000-18x und 169-000-25x

Designs

SKF Oil+Air flow dividers distribute oil+air flows to 2–6 lubrication points. To achieve the most uniform distribution of an oil+air flow, there may not be any back pressure on the outlets of the oil+air flow divider. Further, it must be ensured that the lengths of the secondary lines on the outlets of a flow divider do not vary by more than 0,5 m. A second flow divider must be used if the lengths of secondary lines on the outlets of a flow divider differ by more than 0,5 m.

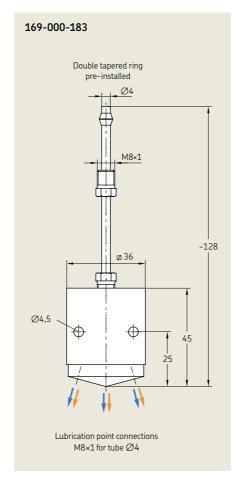
Flow divider 169-0	000-18x
Order number	Number of outlets
169-000-182 169-000-183 169-000-184 169-000-185 169-000-186	2 3 4 5 6

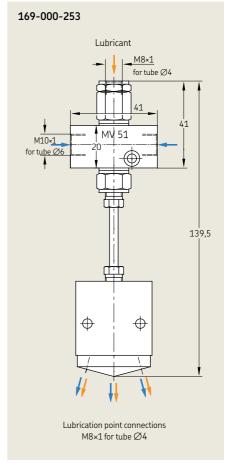
Flow divider 169-000-25x		
Number of outlets		
2		
3 4		
5		

Technical Data

169-000-18x, 169-000-25x

Actuating pressure, air Actuating pressure, oil Operating viscosity Pumped media

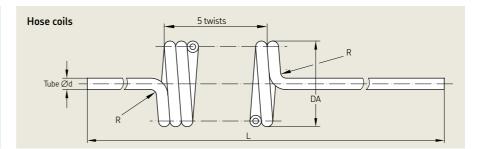

max. 10 bar 5 bar max. 3 000 mm²/s Oil with mineral or synthetic base, compatible with NBR elastomers preferably as illustrated


Metered quantities (external lubricant distributors)

Mounting position

0,01-0,2 cm³/cycle

Dimensions


18 **SKF**

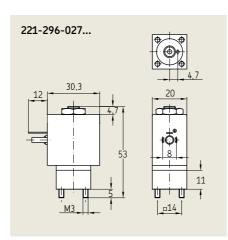
Accessories

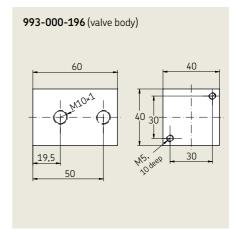
Hose coils

Order number tube Ø DA [mm] [mm] [mm]

828-090-004 4×0,85 30 **828-090-020** 4×0,85 30 **828-090-021** 4×0,85 30 2545 14 10545 14 4045 14

3/2 directional control valve


230 V AC, 50 Hz 120 V AC, 60 Hz $24 \, V \, DC$ Valve body


Order number 221-296-027+363 221-296-027+758 221-296-027+924 993-000-196

Pressure range Mounting position Sealing material Ambient temperature Electrical connection

0-10 bar Any FKM (FPM) +55 °C DIN EN 175301-803 Form C,

connector socket type 2506

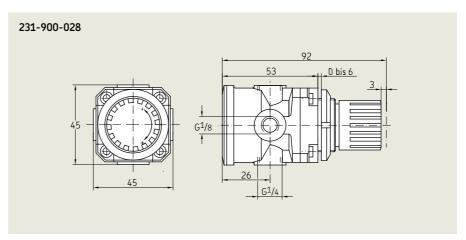
Air pressure control valve

Order number. Type

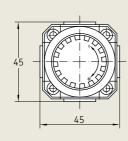
231-900-028 Diaphragm

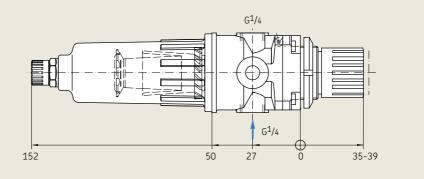
max. primary pressure 0–16 bar Secondary pressure Operating temperature 0–80 °C

regulator 0,5-10 bar


Sealing material

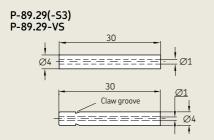
Air pressure control valve incl. filter and water separator


Order number Filter


231-900-028.U1

5 µm

231-900-028.U1



SKF.

Accessories

Nozzles Order number Description **169-000-101+xxx ¹)** Nozzle for tube ∅4 mm L=15-120 mm 169-000-102+xxx 1) Double nozzle for Rohr Ø4 mm L=15-120 mm P-89.29 Nozzle for tube Ø4 mm P-89.29-53 Nozzle for tube Ø4 mm, stainless steel P-89.29-VS Nozzle for tube Ø4 mm, with claw groove for SKF plug connectors

Pressure switch for minimum air pressure

15 %

176-200-009 1×NC contact,

1×N0-contact

24 V AC/DC

Δ5 bar -10 %

420 bar

1) Specify the desired lenght L for xxx

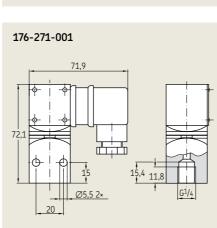
Order number 176-271-001 Contact type Changeover Adjustment range 0,5–5 bar (preset to 3 bar) Max. switching voltage 250 V AC Max. switched current 5A

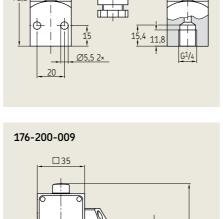
Reset differential

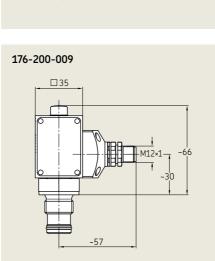
Differential pressure switch

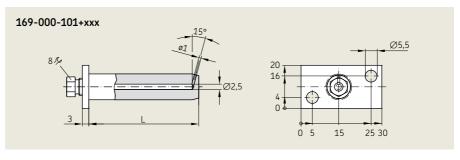
Max. switching capacity 15 VA/W

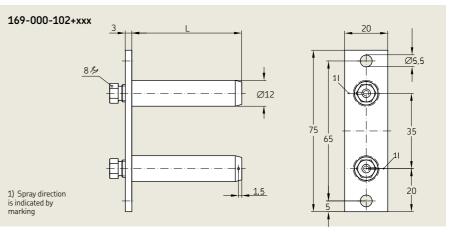
Order number

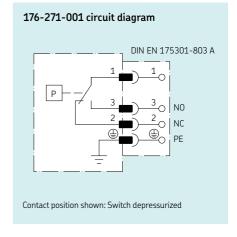

Contact type

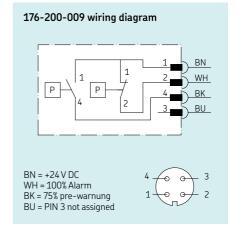

Max. voltage

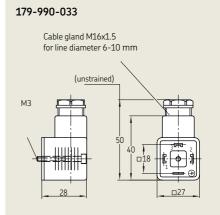

Opening pressure


Max. operating


pressure



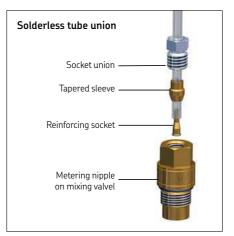




Accessories

Order number Designation 179-990-033 Cable socket per DIN EN 175301-803-A cable diameter

6 bis 10 mm



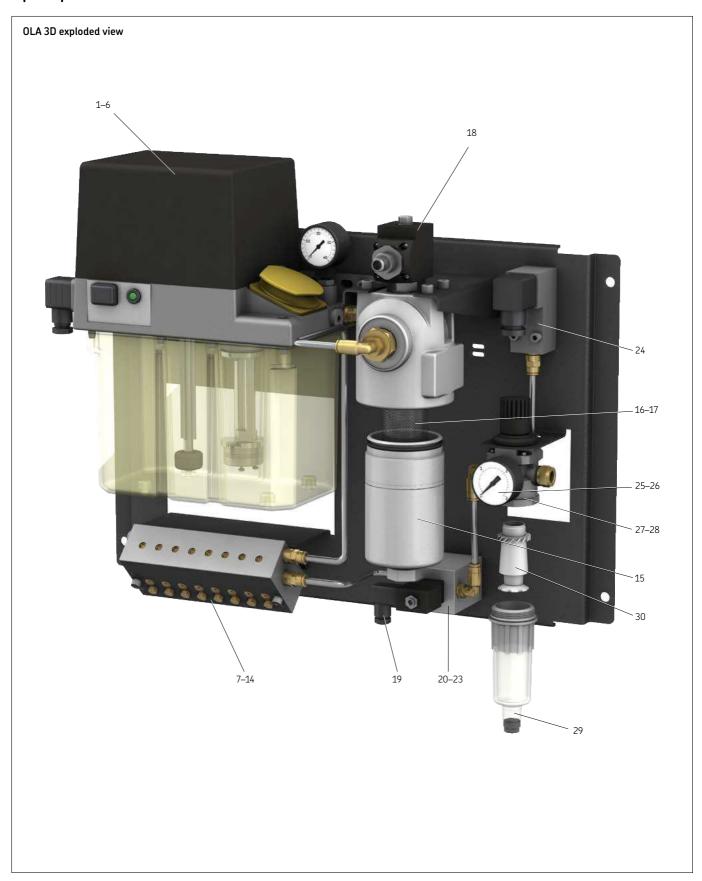
Order number Designation 179-990-371 Cable socket, straight (A) Cable socket, straight with molded cable (B) Cable socket, angled (C) Cable socket, angled with molded cable (5 m, 4×0,34 mm²) (D)

Plugs for metering points				
Order number	Designation			
404-011.U1 450-204-002	Screw plug with copper ring for solderless tube union Locking pin for SKF plug connectors			

Accessories

Tubing		
Order number	Designation	Detailed information in brochure
WVN715-R04×0.85 WVN716-R04×0.85	Plastic tubes Ø 4 mm, semirigid (unplasticized) Plastic tubes Ø 4 mm, flexible (plasticized)	1-0103-EN 1-0103-EN

Pressure filter for oil	
Order number.	Designation
169-460-307 169-460-308 169-460-250 169-460-309	Pressure filter 10 μm , with electric and visual contamination indicator Pressure filter 3 μm , with electric and visual contamination indicator Pressure filter 10 μm , without electric and visual contamination indicator Pressure filter 3 μm , without electric and visual contamination indicator



Oil-streak sensors		
Order number.	Designation	Detailed information in brochure
GS4011-S50	Oil-streak sensor for 60–120 mm ³ /h and line	1-1704-EN
GS4011-S20	diameter of 4 mm Oil-streak sensor for 120–600 mm ³ /h and line	1-1704-EN
	diameter of 4 mm	

22 **SKF**.

Spare parts

Spare parts

em	Order number	Designation
	- Craci Hamber	5-55-5-1-4-1-5-1
	MKL2-12FC11000+428	Gear pump unit with IG54-20-S4-I control unit, for 230 V 50/60Hz
	MKL2-12FC11000+429	Gear pump unit with IG54-20-S4-I control unit, for 115 V 50/60Hz
	MKL2-12FC11000+924 MKU2-12BC11000+428	Gear pump unit with IG54-20-S4-I control unit, for 24 V DC Gear pump unit without control unit, for 230 V 50/60 Hz
	MKU2-12BC11000+429	Gear pump unit without control unit, for 115 V 50/60 Hz
)	MKU2-12BC11000+924	Gear pump unit without control unit, for 24V DC
, }	MV201-1 MV202-1	Oil+air metering unit, 1-port
)	MV202-1 MV203-1	Oil+air metering unit, 2-port Oil+air metering unit, 3-port
.0	MV204-1	Oil+air metering unit, 4-port
.1 .2	MV205-1 MV206-1	Oil+air metering unit, 5-port Oil+air metering unit, 6-port
.3	MV207-1	Oil+air metering unit, 7-port
.4	MV208-1	Oil+air metering unit, 8-port
.5 .6	853-880-011 169-400-250	NG40 housing for oil filters Filter element 10 μm for oil filters
.0 .7	169-400-260-V57	Filter element 3 μm for oil filters
.8	176-200-009	Differential pressure switch for oil filters
.9	179-990-465	Connector socket for 3/2 directional control valve
20 21	221-296-027+263 221-296-027+758	3/2 directional control valve for 230 V, 50 Hz 3/2 directional control valve for 120 V, 60 Hz
22	221-296-027+924	3/2 directional control valve for 24 V DC
23	993-000-196	Valve body, complete for 3/2 directional control valve
24	176-271-001	Pressure switch 3 bar for monitoring of minimum air pressure
25	169-101-606	Pressure gauge for air pressure reducing valve (sealing ring ordered separately = item 26)
?6 ?7	248-610.03 231-900-028.U1	Sealing ring G1/8 CU for pressure gauge Air pressure control valve + 5 μM filter complete with air filter and water separator
28	231-900-028	Air pressure control valve without air filter and water separator
29 80	231-900-035 231-900-034	Water separator container Filter insert $5\mu\text{M}$
1	995-810-047	Complete documentation for oil+air lubrication unit, incl. Declaration of Incorporation and Conformity

24 **SKF**:

Notes

Notes			

Important information on product usage
SKF and Lincoln lubrication systems or their components are not approved for use with gases, liquefied gases, pressurized gases in solution and fluids with a vapor pressure exceeding normal atmospheric pressure (1 013 mbar) by more than 0,5 bar at their maximum permissible temperature.

skf.com | skf.com/lubrication

® SKF is a registered trademark of the SKF Group.

© SKF Group 2017

The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.

PUB LS/P2 13220 EN · 1-5012-3-EN · August 2017